
39

A Prefetching Scheme Exploiting both Data Layout and Access
History on Disk

SONG JIANG, Wayne State University
XIAONING DING, New Jersey Institute of Technology
YUEHAI XU, Wayne State University
KEI DAVIS, Los Alamos National Laboratory

Prefetching is an important technique for improving effective hard disk performance. A prefetcher seeks to accurately
predict which data will be requested and load it ahead of the arrival of the corresponding requests. Current disk prefetch
policies in major operating systems track access patterns at the level of file abstraction. While this is useful for exploiting
application-level access patterns, for two reasons file-level prefetching cannot realize the full performance improvements
achievable by prefetching. First, certain prefetch opportunities can only be detected by knowing the data layout on disk, such
as the contiguous layout of file metadata or data from multiple files. Second, non-sequential access of disk data (requiring
disk head movement) is much slower than sequential access, and the performance penalty for mis-prefetching a randomly-
located block, relative to that of a sequential block, is correspondingly greater.

To overcome the inherent limitations of prefetching at the logical file level, we propose to perform prefetching directly
at the level of disk layout, and in a portable way. Our technique, called DiskSeen, is intended to be supplementary to, and
to work synergistically with, any present file-level prefetch policies. DiskSeen tracks the locations and access times of disk
blocks, and based on analysis of their temporal and spatial relationships, seeks to improve the sequentiality of disk accesses
and overall prefetching performance. It also implements a mechanism to minimize mis-prefetching, on a per-application
basis, to mitigate the corresponding performance penalty.

Our implementation of the DiskSeen scheme in the Linux 2.6 kernel shows that it can significantly improve the effective-
ness of prefetching, reducing execution times by 20%-60% for micro-benchmarks and real applications such as grep, CVS,
and TPC-H. Even for workloads specifically designed to expose its weaknesses DiskSeen incurs only minor performance
loss.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems—Design Studies;
D.4.2 [Operating Systems]: Storage Management—Storage hierarchies

General Terms: Algorithms, Performance, Design, Experimentation

Additional Key Words and Phrases: Prefetching, spatial locality, hard disk, buffer cache

ACM Reference Format:
Jiang, S., Ding, X., Xu, Y., Davis, K.. 2013. A Prefetching Scheme Exploiting both Data Layout and Access History on the
Disk. ACM Trans. Storage 9, 4, Article 39 (March 2010), 21 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

This research was supported in part by National Science Foundation grants CCF-0702500, CCF-0845711, CAREER CCF
0845711, CNS 1117772, and CNS 1217948. A preliminary version has been published in the Proceedings of 2007 USENIX
Annual Technical Conference, Santa Clara, CA, June 2007.
Author’s addresses: Song Jiang and Yuehai Xu, Electrical and Computer Engineering Department, Wayne State University,
Detroit, MI 48202, USA. Email:{sjiang, yhxu}@wayne.edu; Xiaoning Ding, Department of Computer Science, New Jersey
Institute of Technology, Newark, NJ 07102, USA. Email: xiaoning.ding@njit.edu; and Kei Davis, CCS Division, Los Alamos
National Laboratory, Los Alamos, NM 87545, USA. Email: kei.davis@lanl.gov.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 1539-9087/2010/03-ART39 $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 S. Jiang et al.

1. INTRODUCTION
As the speed differential between processor and disk continues to widen, the effect of disk
performance on the performance of data-intensive applications is becoming increasingly great.
Prefetching—speculative reading from disk based on some prediction of future requests—is a fun-
damental technique for improving effective disk performance. Prefetch policies attempt to predict,
based on analysis of disk requests, the optimal stream of blocks to prefetch to minimize disk ser-
vice time as seen by the application workload. Prefetching improves effective disk performance
by accurately predicting disk requests in advance of the actual requests and exploiting hardware
concurrency to hide disk access time behind useful computation.

Two factors demand that prefetch policies be concerned with not just accuracy of prediction but
also the actual time costs of individual accesses. First, a hard disk is a non-uniform-access device
for which accessing sequential locations without disk head movement is at least an order of mag-
nitude faster than random access. Second, as an application load becomes increasingly I/O-bound,
such that disk accesses can be decreasingly hidden behind computation, the importance of carrying
out sequential prefetching increases relative to the importance of performing accurate but random
prefetching. This is a consequence of the speculative nature of prefetching and the relative penal-
ties for incorrectly prefetching a sequential block versus a random block. This may explain why,
despite considerable work on sophisticated prefetch algorithms (Section 5), general-purpose oper-
ating systems still provide only sequential prefetching or straightforward variants thereof. Another
possible reason is that other proposed schemes have been deemed either too difficult to implement
relative to their expected benefits, or too likely to hurt performance in some common scenarios. To
be more relevant to common practice the following discussion is specific to prefetch policies used
in general-purpose operating systems.

Most existing prefetch policies detect access patterns and issue prefetch requests at the logical
file level. This fits with the fact that applications make I/O requests based on logical file structure,
so their discernible access patterns will be directly in terms of this structure. However, because
these policies are oblivious to disk data layout, they do not have the knowledge of where the next
prefetched block would be relative to the current fetched block to estimate prefetching cost. Thus
their measure of prefetching effectiveness, which is usually used as feedback to adjust prefetching
behavior, is in terms of the number of mis-prefetched blocks rather than a more relevant metric, the
penalty for mis-prefetching. Disk layout information is not used until the requests are processed by
the lower-level disk scheduler where requests are sorted and merged, based on disk placement, into
a dispatch queue using algorithms such as SSTF or C-SCAN to maximize disk throughput.

We contend that file-level prefetching has both practical and inherent limitations, and that I/O
performance can be significantly improved by prefetching based on disk data layout information.
Our disk-level prefetching is intended to be supplementary to, and synergistic with, any file-level
prefetching. Following we summarize the limitations of file-level prefetching.

First, sequentiality at the file abstraction may not translate to sequentiality on disk. While file
systems typically seek to dynamically maintain a correspondence between logical file sequentiality
and disk sequentiality, as the file system ages (e.g. Microsoft’s NTFS) or becomes full (e.g. Linux
Ext2) this correspondence may deteriorate. This worsens the penalty for mis-prediction.

Second, the file abstraction is not a convenient level for recording deep access history information.
This is exacerbated by the complications of maintaining history information across file closing
and re-opening and other operations by the operating system. As a consequence, current prefetch
schemes maintain shallow history information and so must prefetch conservatively [Papathanasiou
and Scott 2005]. A further consequence is that sequential access of a short file will not trigger the
prefetch mechanism.

Third, inter-file sequentiality is not exploited. In a general-purpose OS, file-level prefetching
usually takes place within individual files because of the complexities and overhead of inter-file
prefetching. This precludes practical detection of sequential accesses across contiguous files.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Prefetching Scheme Exploiting both Data Layout and Access History on Disk 39:3

Finally, blocks containing file system metadata cannot be prefetched. Metadata blocks, such as in-
odes, are not in files and so cannot be prefetched. Metadata blocks may need to be visited frequently
when a large number of small files are accessed.

In response, we propose a disk-level prefetching scheme, DiskSeen, in which current and histori-
cal information is used to achieve efficient and accurate prefetching. While caches in hard drives are
used for prefetching blocks directly ahead of the block being requested, this prefetching is usually
carried out on each individual track and does not take into account the relatively long-term temporal
and spatial locality of blocks across the entire working set on the disk. The performance potential
of the disk’s prefetching is further constrained because it cannot communicate with the operating
system to determine which blocks are already cached there; this is intrinsic to the disk interface. The
performance improvements we demonstrate are in addition to those provided by existing file-level
and in-disk prefetching.

Our presentation proceeds as follows. In Section 2 we first describe an efficient method for track-
ing disk block accesses and analyzing associations between blocks. We then show how to efficiently
detect sequences of accesses of disk blocks and to appropriately initiate prefetching. In Section 3
we show how to use access history information to detect and exploit complex pseudo-sequences
with high accuracy. In Section 4 we show that an implementation of these algorithms—collectively
DiskSeen—in the current Linux kernel can yield significant performance improvements on repre-
sentative applications. Section 5 discusses related work, and Section 6 concludes.

2. TRACKING DISK ACCESSES
There are two questions to answer before describing DiskSeen. The first is what information about
disk locations and access times should be used by the prefetch policy. Because the disk-specific in-
formation is exposed using the unit of disk blocks, the second question is how to efficiently manage
the potentially large amount of information.

2.1. Exposing Disk Layout Information
Generally, the more specific the information available for a particular disk, the more accurate an es-
timation a disk-aware policy can make about access costs. For example, knowing that blocks span a
track boundary informs that access would incur the track crossing penalty [J. Schindler and Ganger
2002]. As another example, knowing that a set of non-contiguous blocks has some spatial locality,
the scheduler could infer that access of these blocks would incur the cost of semi-sequential ac-
cess, intermediate between sequential and random access [Schlosser et al. 2005]. However, detailed
disk performance characterization requires knowledge of physical disk geometry that is not dis-
closed by disk manufacturers, and its extraction, either interrogative or empirical, is a challenging
task [Schindler and Ganger 2000]. Different extraction approaches may have different accuracy and
work only with certain types of disk interfaces (e.g. SCSI).

An interface abstraction that disk devices commonly provide is logical disk geometry: a linearized
data layout and represented by a sequence [0, 1, 2, . . . , n] of logical block numbers (LBNs). Disk
manufacturers generally make great effort to ensure that accessing blocks with consecutive LBNs
has performance close to that of accessing contiguous blocks on disk by carefully mapping logical
blocks to physical locations with minimal disk head positioning cost [Schlosser et al. 2005]. Though
the LBN does not disclose precise disk-specific information, we use it to represent disk layout
for designing a disk-level prefetch policy because of its standardized availability and portability
across various computing platforms. We show that exposing this logical disk layout is sufficient to
demonstrate that incorporating disk-side information with application-side information into prefetch
policies can yield significant performance benefits worthy of implementation.

2.2. The Block Table for Managing LBNs
Currently LBNs are only used to identify locations of disk blocks for transfer between memory and
disk. Here we track the access times of recently touched disk blocks via their LBNs and analyze
the associations of access times among adjacent LBNs. The data structure holding this information

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 S. Jiang et al.

must support efficient access of block entries and entries of their neighboring blocks via LBNs, and
efficient addition and removal of block entries.

10
20

 (BTE)
Block Table Entry30

Fig. 1. Block table. There are three levels in this example block table: two directory levels and one leaf level. The table
entries at differing levels are fit into separate memory pages. An entry at the leaf level is called a block table entry (BTE). If
one page can hold 512 entries, the access time of a block with LBN 2,631,710 (10 × 5122 + 20 × 512 + 30) is recorded
at the BTE entry labeled 30, which can be efficiently reached via directory-level entries labeled 10 and 20, where 10 and 20
are indices in their respective pages and each entry contains the address of corresponding page in its next level.

The block table, which has been used in the DULO scheme for identifying block sequences [Jiang
et al. 2005], is inspired by the multi-level page table used in almost all operating systems for memory
address translation. As shown in Figure 1, an LBN is broken into multiple segments, each of which
is used as an offset in the corresponding level of the table. In DiskSeen one or multiple timestamps
are recorded at the leaf level entry (i.e., block table entry (BTE)) of a block to represent its most
recent access times. An access counter is incremented with each block reference; its value is the
timestamp for that block and is recorded in the corresponding BTE to represent the access time.

To facilitate efficient removal of old BTEs, each directory (non-leaf) entry records the largest
timestamp of all of the blocks under that entry. To purge the table—remove all blocks with times-
tamps smaller than some given timestamp—entails traversing the table, top level first, identifying
timestamps smaller than the given timestamp, removing the corresponding subtrees, and reclaiming
the memory.

3. THE DESIGN OF DISKSEEN
In essence DiskSeen is a sequence-based, history-aware prefetch scheme. We leave file-level
prefetching enabled; DiskSeen concurrently performs prefetching at a lower level to mitigate the
inadequacies of file-level prefetching. DiskSeen seeks to detect sequences of block accesses based
on LBN. At the same time, it maintains block access history and uses the history information to
further improve the effectiveness of prefetching when recorded access patterns are observed to be
repeated. There are four objectives in the design of DiskSeen.

(1) Efficiency. We ensure that prefetched blocks are in a localized disk area and are accessed in
ascending order of their LBNs for optimal disk performance.

(2) Eagerness. Prefetching is initiated immediately when a prefetching opportunity emerges.
(3) Accuracy. Only the blocks that are highly likely to be requested are prefetched. Significant

mis-prefetching automatically suppresses prefetching.
(4) Aggressiveness. Prefetching is made more aggressive if it helps to reduce request service times.

As shown in Figure 2, the buffer cache managed by DiskSeen consists of a prefetching area and
a caching area. The caching area is managed by the existing OS kernel policies, to which we make

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Prefetching Scheme Exploiting both Data Layout and Access History on Disk 39:5

 Area
Prefetching

2

3

4

1 5

1
2

3
4

5

Buffer Cache

 Area

Hard Disk

Caching

Delayed block write−back

Infomation about prefetch candidates

Prefetching of disk blocks

Move blocks that are hit

On−demand read of disk blocks

Fig. 2. DiskSeen system diagram. Buffer cache is divided into prefetching and caching areas according to their roles in the
scheme. A block could be prefetched into the prefetching area based on either current or historical access information—both
are recorded in the disk block table, or as directed by file-level prefetching. The caching area corresponds to the traditional
buffer cache and is managed by the existing OS kernel policies except that prefetched but not-yet-requested blocks are no
longer stored in the cache. A block is read into the caching area either from the prefetching area, if it is hit there, or directly
from disk, all in an on-demand fashion.

minimal changes for the sake of portability. We do, however, reduce the size of the caching area by
the size of the prefetching area to make the performance comparison fair.

DiskSeen distinguishes on-demand requests from file-level prefetch requests, basing disk-level
prefetch decisions only on on-demand requests, which reflect applications’ actual access patterns.
While DiskSeen generally respects the decisions made by a file-level prefetcher, it also attempts
to identify and screen out inaccurate predictions by the prefetcher using its knowledge of deep
access history. To this end we treat the blocks referenced by file-level prefetch requests as prefetch
candidates and pass them to DiskSeen rather than passing them directly to disk. DiskSeen forwards
on-demand requests from existing request mechanisms directly to disk. We refer to disk requests
from ‘above’ DiskSeen (e.g., applications or file-level prefetchers) as high-level requests.

3.1. Recording Block Access Times
The access times of a block are represented by timestamps that are read from a counter that is
incremented whenever a block is transferred into the caching area on demand. When the servicing
of a block request is completed, either via a hit in the prefetching area or via the completion of a disk
access, the current value of the counter is used as an access time to be recorded in the corresponding
BTE in the block table. Each BTE holds the most recent timestamps, to a maximum of four. In our
prototype implementation the size of a BTE is 128 bits. Each timestamp is 31 bits and the remaining
4 bits are used to indicate block status information such as whether a block is resident in memory.
With a block size of 4KB the 31-bit timestamp can distinguish accesses to 8TB of disk data. When
the counter approaches its maximum value, specifically when the range for used timestamps exceeds
7/8 of the maximum timestamp range, we remove the timestamps whose values are in the first half
of the current range of the block table. In practice this progressive timestamp clearing occurs very
infrequently and its effect is minimal. A block table using 4MB of memory can record history for a
working set of about 1GB. The space overhead for recording the timestamps is modest when using
the table purging mechanism. If needed, old history information could be saved on disk for future
use. By having four timestamps per block, the history-aware prefetching has relatively deep history
information with which to make predictions of blocks to be requested. Furthermore, this usually
makes prefetching more immune to access interference, as described and shown in Section 4.5.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 S. Jiang et al.

3.2. Coordinating Disk Accesses
We monitor the effectiveness of high-level prefetchers by tracking the use of prefetch candidates.
When a prefetch candidate is read into the prefetching area we mark the block’s BTE as prefetched.
This status is only cleared if an on-demand access of the block occurs. When the high-level
prefetcher requests a block that is not resident in memory and has prefetched status, DiskSeen
ignores the request. This is because a previous prefetching of the block was not followed by an
on-demand request for it before it was evicted, suggesting an inaccurate prediction on the block pre-
viously made by the high-level prefetcher. This ability to track prefetching history allows DiskSeen
to identify and correct some of the mis-prefetchings generated by file-level prefetch policies.

For some access patterns, especially sequential accesses, the set of blocks prefetched by a disk-
level prefetcher may also be requested by file-level prefetchers or may be on-demand requests by
applications. To coordinate concurrent requests for the same block, before a request is sent to the
disk scheduler to be serviced by disk we check the blocks contained in the request against corre-
sponding BTEs to determine whether the blocks are already in the prefetching area. For this purpose
we designate a resident bit in each BTE, which is set to 1 when a block enters buffer cache, and
is reset to 0 when it leaves the cache. There is also a busy bit in each BTE that serves as a lock to
coordinate simultaneous requests for a particular block. A set busy bit indicates that a disk service
on the corresponding block is under way, and succeeding requests for the block must wait on the
lock. DiskSeen ignores prefetch requests whose resident or busy bits are set. Thus only requests for
blocks whose resident and busy bits are not set are sent to the disk scheduler.

3.3. Sequence-based Prefetching
The access of each block by a high-level request is recorded in the block table. Unlike maintain-
ing access state per file, per process, in file-level prefetching, DiskSeen treats the disk as a one-
dimensional block array that is represented by leaf-level entries in the block table. Its method of se-
quence detection and access prediction is similar in principle to that used for the file-level prefetch-
ers in some popular operating systems such as Linux and FreeBSD [Butt et al. 2005; R. Pai and
Cao 2004], but because DiskSeen operates directly on disk mappings it is not constrained by file
boundaries.

3.3.1. Sequence Detection. Prefetching is activated when accesses of K contiguous blocks are
detected, where K is chosen to be 8 to give confidence of sequentiality. Selection of this K value is
based on empirical knowledge obtained in the system evaluation. DiskSeen’s performance advan-
tage is not sensitive to this parameter between values of 6 and 10. Detection is carried out in the
block table. For a block in a high-level request we examine the most recent timestamps of blocks
physically preceding the block to see whether it is the Kth block in a sequence. This back-tracking
operation on the block table is efficient compared to disk service time. Because access of a sequence
can be interleaved with accesses to other disk regions, the most recent timestamps of the blocks in
the sequence might not be consecutive, so we only require that the timestamps be monotonically
decreasing. However, too large a gap between the timestamps of two contiguous blocks indicates
that one of the two blocks might not be accessed before being evicted from the prefetching area
(i.e., from memory) if they were prefetched together as a sequence, in which case these two blocks
should not be included in the same sequence. We use a timestamp gap threshold, T , equal to 1/64 of
the size of the total system buffer memory, measured in blocks, which is also the default minimum
prefetching area size (Section 3.6). As an example, for memory size of 512MB and block size of
4KB, the threshold is 2048 (= 512MB/(64∗4KB)). Our empirical data show that in many cases the
prefetch area holds about 1/64 of the total system buffer size. The performance of DiskSeen is not
sensitive to the value of T within a large range. If the threshold is extremely small (e.g., smaller than
50) a prefetch sequence may not be formed; if it is very large it may lead to wasteful prefetching
and consequent suspension of prefetching by DiskSeen’s quality control mechanism (Section 3.5).

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Prefetching Scheme Exploiting both Data Layout and Access History on Disk 39:7

3.3.2. Sequence-based Prefetching. When a sequence is detected we create two 8-block win-
dows, the current window and the readahead window. We prefetch 8 blocks immediately ahead of
the sequence into the current window, and the following 8 blocks into the readahead window. We
then monitor the number f of blocks that are hit in the current window by high-level requests. When
the blocks in the readahead window start to be requested, we create a new readahead window whose
size is 2f (up to a maximum window size), and the existing readahead window becomes the new
current window. In detail, we set minimum and maximum window sizes, min and max, respectively.
If 2f < min , prefetching is canceled because requesting a small number of blocks cannot amortize
a disk head repositioning cost and so is inefficient. If 2f > max , the prefetching size is max be-
cause prefetching too aggressively imposes a high risk of mis-prefetching and increases pressure on
the prefetching area. In our prototype min is 8 blocks and max is 32 blocks (with 4KB block size).
We note that the actual number of blocks that are read into memory can be less than the prefetch
size so specified because resident blocks in the prefetch scope are excluded from prefetching. That
is, the window size becomes smaller when more blocks in the prefetch scope are resident. Accord-
ingly, prefetching is slowed down, or even stopped, when many blocks to be prefetched are already
memory. Thus potentially inefficient prefetching, such as requests for non-contiguous and/or a small
number of blocks, can be avoided.

3.3.3. Data Structure for Managing Prefetched Blocks. In DiskSeen each on-going prefetch is rep-
resented using a prefetch stream, a pseudo-FIFO queue where prefetched blocks in the two windows
are placed in the order of their LBNs. A block in the stream that is hit is immediately moved to the
caching area. For one or multiple running programs concurrently accessing different disk regions
there would exist multiple streams. To facilitate the replacement of blocks in the prefetching area,
we have a global FIFO queue called the reclamation queue. All prefetched blocks are placed at
the tail of the reclamation queue in the order of their arrival. Thus blocks in the prefetch windows
appear in both prefetch streams and the reclamation queue.1 A block leaves the reclamation queue
either because it is hit by a high-level request or it reaches the head of the queue. In the former case
the block enters the caching area, and in the latter case it is evicted from memory.

3.4. History-aware Prefetching
In sequence-based prefetching we only use the block accesses of current requests, or recently de-
tected access sequences, to initiate sequential prefetching. A key observation is that the block table
in fact contains much richer access information that can be used to further improve prefetching.

3.4.1. Access Trails. To describe access history we introduce the term trail to describe a sequence
of blocks that has been accessed with a small time interval between each consecutive pair of blocks
in the sequence and is located in a spatially bounded region. Suppose blocks (B1, B2, . . . , Bn) are
a trail, where 0 < timestamp(Bi)− timestamp(Bi−1) < T , and |LBN (Bi)− LBN (B1)| < S,
(2 ≤ i ≤ n), where T is the same timestamp gap threshold used for sequence detection in sequence-
based prefetching. A block can have up to four timestamps, any one of which can be used to satisfy
the given condition. If B1 is the start block of the trail, all of the following blocks must be on either
side of B1 within distance S. We refer to the window of 2S blocks, centered at the start block, as the
trail extent. Thus a sequence detected in sequence-based prefetching is the special case of a trail in
which all blocks are on the same side of start block and have contiguous LBNs. By using a window
of limited size (in our implementation S is 128), we allow a trail to capture only localized accesses
so that prefetching such a trail is efficient and the penalty for a mis-prefetching is small. For an
access pattern that spans a large area multiple trails would be formed to track each set of proximate
accesses rather than forming an extended trail that could result in expensive disk head movements.
Trail detection is of low cost because, when the timestamp of one block in a trail is specified, at
most one timestamp of its following block is likely to be within T , in turn because the gap between

1In the implementation the prefetch streams are data structures embedded in the reclamation queue—in general blocks are
never duplicated.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 S. Jiang et al.

Trail 1 (of current accesses)
Trail 2

43515
22000
N/A

85011 85010
63290
43510
37000

8500052002 52001
63110
52000
43500

74000
63111
43550
34950

85001
63200
43501
35000

B B BBB B3 4 5 6 7B1 2

Trail 3
Trail 4

Fig. 3. Access trails. B1 through B7 are consecutive contiguous blocks in the block table. There are four trails starting
from block B3: one current trail and three history trails. Trail 1 (B3, B5, B7, B6) corresponds to the on-going continuous
block accesses. This trail cannot lead to a sequence-based prefetch because B4 is missing. It is echoed by two history trails:
Trails 2 and 3, though Trail 1 only overlaps with part of Trail 2. In this example the timestamp threshold T is 256.

two consecutive timestamps of a block is usually very large (because they represent access, eviction,
and re-access). Figure 3 illustrates four example trails on a segment of a block table.

3.4.2. Matching Trails. While the sequence-based prefetching only relies on the current on-going
trail to detect a pure sequence for activating prefetching, we can now take advantage of history
information, if available, to carry out prefetching even if a pure sequence is not detected, or to
prefetch more accurately and at the right time. The general idea is to use the current trail to match
history trails and then use matched history trails to identify prefetchable blocks. Note that history
trails are detected in real time so there is no need to explicitly record them.

When there is an on-demand access of a disk block that is not in any current trail’s extent, we
start tracking a new trail from that block. At the same time we identify history trails consisting
of blocks visited by the current trail in the same order. Referring to Figure 3, when the current
trail (Trail 1) extends from B3(85000) to B5(85001), two history trails are identified: Trail 2
(B3(63110), B5(63200)) and Trail 3 (B3(43500), B5(43501)). When the current trail advances
to block B7 both Trail 2 and Trail 3 extend to it. However, only Trail 3 can match the current trail
to B6 while Trail 2 is broken at that block. The CPU time used for matching the trails is negli-
gible relative to the disk-data prefetching time. For I/O-intensive workloads this prefetching time
significantly overshadows the overhead of running DiskSeen.

3.4.3. History-aware Prefetching. Because of the strict matching requirement we initiate history-
aware prefetching when we find a history trail that matches the current trail for a small number of
blocks (4 blocks in the prototype). To use the matched history trails to find prefetchable blocks we
set up a trail extent centered at the last matched block, say block B. We then follow the history
trails from B in the extent to obtain a set of blocks that the matched history trails are expected to
visit. Suppose ts is a timestamp of block B that is used in forming a matched history trail, and
T is the timestamp gap threshold. We then search the extent for blocks that contain a timestamp
between ts and ts + T . Note that this criterion is stricter than the requirement that the gap between
the timestamps of two adjacent blocks be less than T , which makes the search efficient and perform
well in practice. We obtain the extension of the history trail in the extent by sorting the blocks in
ascending order of their corresponding timestamps. We then prefetch the non-resident ones in the
order of their LBNs and place them in the current window, similarly to sequence-based two-window
prefetching. Starting from the last prefetched block, we similarly prefetch blocks into a readahead
window. The initial window sizes, or the number of blocks to be prefetched, are each of size min
(8 in our implementation). If the window size becomes less than min prefetching aborts. When the
window size becomes larger than max (64 in our implementation), only the first max blocks are
prefetched. If there are multiple matched history trails, we prefetch the intersection of these trails.
By prefetching the intersection, rather than union, of multiple matched trails, DiskSeen reduces
the risk of retrieving useless blocks, which would waste I/O bandwidth and potentially cause the
prefetching to be disabled. The two history-aware windows are shifted forward much in the same

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Prefetching Scheme Exploiting both Data Layout and Access History on Disk 39:9

way as in the sequence-based prefetching. To keep history-aware prefetching enabled there must be
at least one matched history trail. If history-aware prefetching aborts, sequence-based prefetching
is attempted.

3.5. Reducing the Penalty of Mis-prefetching
As described in Section 3.4.1, history-aware prefetching searches for and prefetches blocks in a
small disk region. This both improves the efficiency of prefetching and limits the penalty of mis-
prefetching. To further limit the number of mis-prefetching occurrences DiskSeen monitors the
accuracy of prefetching for each application and stops prefetching for that application when the
fraction of blocks that are mis-prefetched exceeds a predefined limit.

Mis-prefetching by history-aware prefetching is caused by changes in access patterns on specific
disk regions. This may lead to a scenario where previously recorded access history only partially
matches current accesses in a disk region so that history-prefetching is triggered but the predictions
are mostly incorrect. For example, suppose that in a small disk region, application P1 has accessed
blocks (B1, B2, . . . , B20) in order. Then another application P2 accesses blocks (B1, B2, B3, B4),
but does not access blocks (B5, B6, . . . , B20). The matching of the first four blocks of these two
trails activates history-aware prefetching on behalf of application P2 according to the history trail
left by P1, and blocks (B5, B6, . . . , B20) are mis-prefetched. While occasional mis-prefetching
only mildly degrades the benefit of prefetching, frequent mis-prefetching may cause substantial
performance degradation as has been reported on the earlier design of DiskSeen [Ding et al. 2007].
Mis-prefetching can also occur with sequence-based prefetching, particularly when when a large
value is selected for the timestamp gap threshold T . To address this issue DiskSeen provides a
prefetching quality control mechanism.

In DiskSeen, blocks in the same prefetching window are close to each other on the disk and
are prefetched together. For a prefetching window with mis-prefetched blocks, if any blocks in the
window are eventually used by any application before they are evicted, the performance penalty
associated with the mis-prefetched blocks can be regarded as small. This is because the additional
cost to prefetch unneeded blocks in the window is small compared to the seek time to read the
needed blocks in the window. However, if none of the prefetched blocks in a window are used,
the cost for prefetching of the entire window of blocks becomes a performance penalty. For this
reason DiskSeen monitors the number of windows containing only mis-prefetched blocks, called
mis-prefetched windows, to determine if an on-going history-aware prefetching should continue.
Specifically, for each application (process) DiskSeen periodically checks the ratio of mis-prefetched
windows among total prefetch windows, and disables history-aware prefetching for the application
if the ratio is greater than 50% in the most recent 512 prefetch windows. While prefetching is
disabled, DiskSeen continues to create and maintain prefetch streams but does not perform actual
disk accesses. When the ratio of mis-prefetched windows drops below 30% prefetching for the
application is resumed.

3.6. Balancing Memory Allocation between the Prefetching and Caching Areas
In DiskSeen, memory is adaptively allocated between the prefetching area and caching area to
maximize system performance, as follows. We extend the reclamation queue with a segment of
2048 blocks that receive the metadata of blocks evicted from the queue. We also set up a FIFO
queue, of the same size as the segment for the prefetching area, that receives the metadata of blocks
evicted from the caching area. We divide the runtime into epochs, whose duration is the period when
Npre area disk blocks are requested, where Npre area is a sample of current sizes of the prefetching
area in blocks. In each epoch we monitor the numbers of hits to these two segments (actually they
are misses in the memory), Hprefetch and Hcache , respectively. If |(Hprefetch −Hcache)|/Npre area

is greater than 10%, we move 128 blocks of memory from the area with fewer hits to the other area
to balance the misses between the two. To keep prefetching from being fully neutralized simply
because caching is very effective with a large number of hits on the caching area, we set a minimum
prefetching area size—by default 1/64 of the total system buffer memory.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 S. Jiang et al.

3.7. DiskSeen for the Disk Array
To leverage I/O parallelism for higher disk throughput, a disk array, or RAID, is frequently adopted
to replace a single disk as the storage device of its host computing system. Because the design of
DiskSeen is based on the abstraction of a logical linear index in the form of LBN addresses, without
reference to actual disk configuration, and a disk array exposes one consistent LBN space to the
system, DiskSeen as designed for the single disk can perform its prefetching functionality on a disk
array without changes.

The significant consequence of this underlying change in configuration is that the trails formed
by DiskSeen may now span multiple disks because consecutive logical addresses are striped across
the member disks of an array using a fixed striping unit size. Spanning trails across an array of disks
can nullify DiskSeen’s use of prefetching to improve I/O performance. When there exist concurrent
requests that belong to different trails on a disk, it is critical for the disk to serve only one trail’s
requests at a time to avoid thrashing the disk head among trails on different disk regions. When
DiskSeen carries out prefetching on each of its trails, it generates prefetch requests for each trail
using its two-window-based policy. If the trails are on a single disk, the disk’s scheduler should be
able to serve requests of the same trail in a batch to exploit access spatial locality for good disk
efficiency. However, if the trails are spread over multiple disks because of data striping, any given
disk is unlikely to serve consecutive requests from the same trail. In a disk array, each disk has its
own scheduler and its requests are independently scheduled. The subsequent requests may not be
immediately scheduled at their respective disks as the disks can be serving requests of other trails.
Because a prefetch window is shifted forward only when requests in its previous window have been
served and the pre-loaded data start to be used, it can be a long time for the next request on the same
trail to reach a disk. Consequently the scheduler must move the disk head to serve a request on a
different trail. Such a scenario could occur on every disk in the array and for every trail, leading to
disk head thrashing.

To address this problem we need to coordinate the scheduling of the disks so that (1) all prefetch
requests generated by DiskSeen on a trail can be served together at each disk; and, (2) each disk can
continuously serve a number of local requests that belong to the same trail before it moves its disk
head to serve another trail’s requests. To achieve this coordination we assign requests on the same
trail a distinct common identifier and embed it in the requests. All requests that do not belong to any
trail use a reserved identifier. Thus if there are N trails at a given time, the coordinated disk array
has N+1 scheduling groups, each consisting of requests with a common identifier. We alternate
the disk array’s service among the scheduling groups, each for a time slice. In each time slice
only the requests from the same scheduled group are served. To ensure that this coordination does
not compromise the entire disk array’s efficiency we make two adjustments. First, we monitor the
system’s I/O throughput during each group’s time slice, and make the lengths of the groups’ time
slices proportional to their respective throughputs. Second, because a trail is formed by requests
of strong locality, the throughput corresponding to serving a trail should be higher than that for
requests not on trails. For this reason, if we observe that the former throughput is actually lower
than the latter—for example, when requests in a prefetch window are served but requests in the next
prefetch window have not yet been issued—we end the current time slice for the trail.

4. EXPERIMENTAL EVALUATION
To evaluate the performance of the DiskSeen scheme in a mainstream operating system we imple-
mented a prototype in the Linux 2.6.11 kernel. In the following sections we first describe some
implementation considerations, then the experimental results of micro-benchmarks and real-world
applications.

4.1. Implementation Considerations
Unlike the existing prefetch policies that rely on high-level abstractions (i.e., file ID and offset)
that map to disk blocks, the prefetch policy of DiskSeen directly accesses blocks via their disk

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Prefetching Scheme Exploiting both Data Layout and Access History on Disk 39:11

IDs (i.e., LBNs) without knowledge of higher-level abstractions. By doing so, in addition to being
able to extract disk-specific performance when accessing file contents, the policy can also prefetch
metadata, such as inode blocks, that cannot be seen via high-level abstractions, in LBN-ascending
order. To make the LBN-based prefetched blocks usable by high-level I/O routines it would be
cumbersome to proactively back-translate LBNs to file/offset representations. Instead, we treat a
disk partition as a raw device file from which to read blocks in a prefetch operation and place them
in the prefetching area. When a high-level I/O request is issued, we check the LBNs of requested
blocks against those of prefetched blocks. A match causes a prefetched block to move into the
caching area to satisfy the I/O request.

DiskSeen for the disk array has an additional component built into the Linux software RAID md
module. The md module is responsible for splitting a request into sub-requests and sending them to
respective disks, where the regular disk scheduler does the local scheduling. By knowing to which
trail requests belong, and which requests are not on any trails, this component schedules them to the
individual disks during their respectively assigned time slices.

The prototype implementation of DiskSeen consists of approximately 1100 lines of code added
to 15 existing files concerned with memory management, the file system, and block devices in the
Linux kernel, and approximately 3800 lines of code in new files to implement the main algorithms.

4.2. Experimental Setup
The experiments were conducted on a machine with a 3.0GHz Intel Pentium 4 processor, 512MB
memory, and a Western Digital WD1600JB 160GB 7200rpm hard drive with an 8MB cache. The OS
is Redhat Linux WS4 with the Linux 2.6.11 kernel using the Ext3 file system. The free parameters
for DiskSeen, T , the timestamp gap threshold, was 2048, and S, which is used to determine the trail
extent, was 128.

4.3. Performance of One-run Benchmarks
We selected six benchmarks for measuring individual run times in varying scenarios. These bench-
marks represent various common disk access patterns of interest. Among the six benchmarks, which
are briefly described following, strided and reversed are synthetic and the other four are real-world
applications.

(1) strided is a program that reads a 1GB file in a strided fashion, reading every other 4KB of data
from the beginning to the end of the file with a small amount of compute time after each read.

(2) reversed is a program that sequentially reads a 1GB file from its end to its beginning.
(3) CVS is a version control utility commonly used in software development environments. We ran

cvs -q diff, which compares a user’s working directory to a central repository, over two identical
data sets with a 50GB disk space gap between them.

(4) diff is a tool that compares two files for character-by-character differences. This was run on two
data sets. Its general access pattern is similar to that of CVS. We use their subtle differences to
illustrate performance differences DiskSeen can make.

(5) grep is a tool to search a collection of files for lines containing a match to a given regular
expression. It was run to search for a keyword in a large data set.

(6) TPC-H is a decision support benchmark that processes business-oriented queries against a
database system. In our experiment we use PostgreSQL 7.3.18 as the database server. We choose
the scale factor 1 to generate the database, and run a query against it. We use queries Q4 and
Q17 (described later) for the experiment.

For the analysis of experimental results across different benchmarks we use the source code tree
of Linux kernel 2.6.11, of size approximately 236MB, as the data set for benchmarks CVS, diff,
and grep. Figure 4 shows the execution times of the benchmarks on the stock Linux kernel, and the
times for their first and second runs on the kernel with the DiskSeen enhancement. Before every
run the buffer cache is emptied to ensure that all blocks are accessed from disk. For most of the
benchmarks the first runs with DiskSeen achieve substantial performance improvements because of

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 S. Jiang et al.

Linux 2.6.11
First Run w/ DiskSeen
Second Run w/ DiskSeen

 0

 20

 40

 60

 80

 100

 120

 140

Q17Q4grepdiffCVSreversedstrided

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

o
n
d
s)

Fig. 4. Execution times of the six benchmarks, including two TPC-H queries, Q4 and Q17.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

11600115001140011300112001110011000

Lo
gi

ca
l B

lo
ck

 N
um

be
r

Access Number

Fig. 5. A sample of CVS execution without DiskSeen.

DiskSeen’s sequence-based prefetching, while the second runs enjoy further improvements because
of the history information from the first run. The improved performance for the second runs is
meaningful in practice because users often run a program multiple times with only part of the input
changed but with the on-disk data set and the access patterns over them largely unchanged across
runs. For example, a user may run grep many times to search different patterns over the same set of
files, or CVS or diff with some minor changes to several files. Following we analyze the performance
results in detail for each benchmark.

Strided, reversed. With its strided access pattern no sequential access patterns can be detected
for strided either at the file level or at disk level. The first run with DiskSeen does not reduce its
execution time. Neither does it increase its execution time, showing that the overhead of DiskSeen
is minimal. We have similar observations with reversed. With the history information, the second
runs of the two benchmarks with DiskSeen show significant execution reductions: 27% for strided
and 51% for reversed, because the histories correctly indicate the prefetchable blocks. It is not sur-
prising to see a large improvement with reversed: without prefetching, reversed accesses can incur
the time for a full disk rotation to service each request. DiskSeen prefetches blocks in large aggre-
gates and requests them in ascending order of their LBNs, and each aggregate can be prefetched
in one disk rotation. Note that the disk scheduler has little opportunity to reverse the continuously
arriving requests and service them without waiting for a disk rotation because it usually works in
a work-conserving fashion and requests are always dispatched to disk at the earliest possible time,
at least for synchronous requests from the same process. Recognizing that reverse sequential and
forward/backward strided accesses are common and performance-critical access patterns in high-
performance computing, the GPFS file system from IBM [Schmuck and Haskin 2002] and the MPI-
IO standard [MPI-IO] provide special treatment for identifying and prefetching such sequences. If
history access information is available, DiskSeen can handle these access patterns as well as more
complex patterns without making the file systems or I/O interfaces more complex.

CVS, diff. As shown in Figure 4, DiskSeen significantly improves the performance of both CVS
and diff on the first run, and more so on the second run. This is because the Linux source code

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Prefetching Scheme Exploiting both Data Layout and Access History on Disk 39:13

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 11000 11100 11200 11300 11400 11500 11600

Lo
gi

ca
l B

lo
ck

 N
um

be
r

Continuous Accesses

on-demand blocks

Fig. 6. A sample of CVS execution with DiskSeen, first run

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 11000 11100 11200 11300 11400 11500 11600

Lo
gi

ca
l B

lo
ck

 N
um

be
r

Access Number

on-demand blocks
blocks to stream 1
blocks to stream 2
blocks to stream 3

Fig. 7. A sample of CVS execution with DiskSeen, second run.

tree mostly consists of small files, and at the file level sequences across these files cannot be de-
tected, so prefetching is only occasionally activated in the stock kernel. However, many sequences
can be detected at the disk level even without history information. Figure 5 shows a segment of
CVS execution with the stock kernel. The x-axis shows the sequence of accesses to disk blocks,
and the y-axis shows the LBNs of these blocks. Lines connect points representing consecutive
accesses to indicate logical distance between accessed blocks, and thus (beyond a threshold) the
necessity for disk head movement. Figures 6 and 7 show the same segment of the first and second
runs of CVS with DiskSeen, respectively. While both sequence-based prefetching in the first run
and history-aware prefetching in the second run significantly reduce disk head movement, history-
aware prefetching is more effective than sequence-based prefetching. We observe some on-demand
requests in the first run between prefetching requests, e.g., the on-demand requests near accesses
11015 and 11160. These requests are to read CVS versioning information and cannot be prefetched
with sequence-based prefetching as will be explained later. In the second run these requests are
serviced by history-aware prefetching. The figures also show that each sequence-based prefetching
usually prefetches fewer blocks than a history-aware prefetch and thus incurs correspondingly more
disk head movement. The figures also differentiate accesses of blocks that are fetched on demand
or prefetched into different prefetch streams. It is evident that there are multiple concurrent prefetch
streams, and most accesses are prefetches.

While the first runs of CVS and diff with DiskSeen reduce execution times by 16% and 18%,
respectively, the second runs further reduce the times by 16% and 36%. For CVS, each directory in
a CVS-managed source tree (i.e., working directory) contains a directory, named CVS, to store ver-
sioning information. When CVS processes each directory, it first checks the CVS subdirectory, and
then examines other files/directories in their order in the directory. This visit to the CVS subdirectory
disrupts the sequential accesses of regular files in the source code tree, and correspondingly disrupts
sequence-based prefetching. In the second run, new prefetch sequences including the out-of-order
blocks (that might not be purely sequential) are formed by examining history trails, yielding a per-
formance inprovement. There are also many non-sequentialities in the execution of diff that prevent

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 S. Jiang et al.

6.24e+06

6.26e+06

6.28e+06

6.30e+06

6.32e+06

6.34e+06

6.36e+06

6.38e+06

 28000 30000 32000 34000 36000

Lo
gi

ca
l B

lo
ck

 N
um

be
r

Access Number

Fig. 8. A sample of grep execution without DiskSeen.

6.24e+06

6.26e+06

6.28e+06

6.30e+06

6.32e+06

6.34e+06

6.36e+06

6.38e+06

 28000 30000 32000 34000 36000

Lo
gi

ca
l B

lo
ck

 N
um

be
r

Access Number

on-demand blocks
blocks to stream 1
blocks to stream 2
blocks to stream 3
blocks to stream 4

Fig. 9. A sample of grep execution with DiskSeen.

its first run from achieving the full performance potential. When we extract a kernel tar file, the
files/directories in a parent directory are not necessarily laid out in the alphabetical order of their
names. However, diff accesses these files/directories in strict alphabetical order. So even though
these files/directories have been well placed sequentially on disk, these mismatched orders break
physical sequentiality to the point of making accesses in some directories close to random, resulting
in diff having worse performance than CVS. Again during the second run, history trails help to find
the blocks that are proximate and have been accessed within a relatively short period of time, and
DiskSeen sends prefetch requests for these blocks in ascending order of their LBNs. In this way the
mismatch is largely corrected for and performance is significantly improved.

Grep: While it is easy to understand the significant performance improvements of CVS and diff
because of their alternate accesses of two remote disk regions, we must examine why grep, which
only searches a local directory, also enjoys good performance improvement—a 20% reduction in its
execution time.

Figure 8 shows a segment of execution of grep with the stock kernel. The two distinct regions
correspond to two cylinder groups. In each cylinder group inode blocks are located at the beginning,
followed by file data blocks. Before a file is accessed, its inode must be inspected, so we see many
lines dropping down from file data blocks to inode blocks in a cylinder group. Figure 9 shows the
corresponding segment of execution of the first run of grep with DiskSeen. By prefetching inode
blocks most of the disk head movement is eliminated. The figure also shows that accesses to inode
blocks and data blocks are from different prefetch streams. This is a consequence of independent
prefetching in each localized area.

TPC-H: In this experiment query Q4 performs a merge-join against tables orders and lineitem.
It sequentially searches table orders for records representing orders placed in a specific time frame,
and for each such record the query searches for matching records in table lineitem by referring to an
index file. Because table lineitem was created by adding records generally corresponding to the order
time, DiskSeen can identify sequences in each small disk area for prefetching. In addition, history-
aware prefetching can exploit history trails for further prefetching opportunities (e.g., reading the
index file), and achieves a 26% reduction in execution time compared to the stock kernel.

DiskSeen does not show any performance improvements for query Q17. We carefully examined
its access pattern and found that the query carried out index scans repeatedly on table lineitem and
accessed it in a nearly random fashion, and with weak spatial locality, in many small disk areas.
Sequence-based prefetching is not triggered because of the absence of long access sequences. Weak
spatial locality also prevents history-aware prefetching from being triggered in most disk regions.
When history-aware prefetching is activated, because data blocks of table lineitem are accessed mul-
tiple times with different access patterns, prefeching is misled to load data that are not immediately
used and are evicted before they are requested. Instead of allowing the mis-prefetching to degrade
I/O performance, as exhibited by the earlier version of DiskSeen (approximately 10% increase in
execution time for Q17) [Ding et al. 2007], DiskSeen disables history-aware prefetching for Q17
when mis-prefetching is detected.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Prefetching Scheme Exploiting both Data Layout and Access History on Disk 39:15

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5 10 15 20 25

Th
ro

ug
hp

ut
 (M

b/
se

co
nd

)

Time (minute)

DiskSeen
Linux 2.6.11

Fig. 10. LXR throughputs with and without DiskSeen.

4.4. Performance of Continuously Running Applications
For applications that are continuously running against the same set of disk data, previous disk ac-
cesses should serve as history access information to improve the I/O performance of current disk
accesses. To test this hypothesis we installed a Web server running the general hypertext cross-
referencing tool Linux Cross-Reference (LXR) [LXR], a tool widely used by Linux developers for
searching Linux source code.

We use the LXR 0.3 search engine on the Apache 2.0.50 HTTP Server, and use Glimpse 4.17.3
as the freetext search engine. The file set searched is three versions of the Linux kernel source code:
2.4.20, 2.6.11, and 2.6.15. Glimpse divides the files in each kernel into 256 partitions, indexes the
file set based on partitions, and generates an index file showing the keyword locations in terms of
partitions. The total size of the three kernels’ files and the index files is 896MB. To service a search
query Glimpse searches the index file first, then accesses the files included in the partitions matched
in the index files. On the client side we used WebStone 2.5 [WebStone] to generate 25 clients
concurrently submitting freetext search queries. Each client randomly chooses a keyword from a
pool of 50 keywords and sends it to the server, and sends its next query request once it receives the
results of its previous query. We randomly select 25 Linux symbols from the file /boot/System.map
and another 25 frequently used OS terms such as “lru”, “scheduling”, and “page” as the pool of
candidate query keywords. Each keyword is searched for in all three kernels. The performance
metric we use is the throughput of the query system in MBit/sec, i.e., the bit rate of raw query results
returned by the server. This metric is also used for reporting the WebStone benchmark results.

Figure 10 shows the LXR throughputs on the kernels with and without DiskSeen during an in-
terval of execution. We make two observations. First, DiskSeen improves LXR’s throughput by
prefetching contiguous small files at disk level. Second, from the tenth minute to twenty-fifth minute
of the execution, the throughput of LXR with DiskSeen monotonically increases while the through-
put without DiskSeen remains flat. This demonstrates that DiskSeen can progressively improve
performance as it accumulates history access information.

4.5. Interference by Noisy History
While well-matched history access information left by prior runs of applications is expected to pro-
vide accurate hints and improve performance, a reasonable speculation is that a misleading history
could cause DiskSeen to prefetch unneeded blocks and degrade application performance. To inves-
tigate the interference effect caused by such noisy history on DiskSeen’s performance, we designed
experiments in which two applications access the same set of data with different access patterns.
We use grep and diff as test applications. Grep searches for a keyword in a Linux source code tree
that is also used by diff to compare against another Linux source code tree. We know that grep
scans files essentially in the order of their disk layout, while diff visits files in alphabetical order of
directory/file names.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 S. Jiang et al.

Table I. Execution times and hit ratios

Experiments Execution times (seconds)
Linux diff 98.4 grep 17.2

I diff grep diff grep
81.1 16.3 46.4 14.0

II grep diff grep diff
14.0 67.7 13.9 46.1

Linux grep/diff 20.9/55.8

III grep/diff

15.2/44.9
17.0/34.6
17.9/34.8
18.2/34.5
18.3/35.1

Experiments Hit Ratios (%)
Linux diff 100 grep 100

I diff grep diff grep
84 92 97 98

II grep diff grep diff
87 89 99 97

Linux grep/diff 100

III grep/diff

90
94
96
98
97

Execution times and hit ratios for diff and grep when they are alternately executed in dif-
ferent orders or concurrently, with DiskSeen, compared to the times and hit ratios for the
stock kernel. The times reported are wall clock times. The hit ratio describes the percentage
of prefetched data that have been actually requested by the programs before they are evicted.

In the first two experiments we run the applications alternately, specifically in sequence (diff, grep,
diff, grep) in experiment I and sequence (grep, diff, grep, diff) in experiment II. Between application
runs the buffer cache is emptied to ensure that the second run does not benefit from cached data,
while history access information in the block table remains alive across the sequence of runs in an
experiment. The execution times compared to the stock kernel are shown in Table I.

If we use the execution times without any history as reference points (the first runs in experi-
ments I and II), where only sequence-based prefetching occurs, noisy history causes a 16% degrada-
tion in performance in the first run of grep (16.3s vs. 14.0s) in experiment I, while it serendipitously
improves the performance in the first run of diff by 17% (67.7s vs. 81.1s) in experiment II. The
degradation in experiment I is due to the misleading history access information left by diff while
running grep, wherein a matched history trail is found and history-based prefetching is activated.
However, the matched history trail is broken when diff visits files in a different order. This causes
DiskSeen to fall back to sequence-based prefetching, which takes some time to be activated (ac-
cesses of 8 contiguous blocks). Thus, history-aware prefetching attempts triggered by noisy history
keep sequence-based prefetching from achieving its performance potential. It is interesting that a
trail left by grep improves the performance of diff, which has a different access pattern, in exper-
iment II. This is because the trails left by grep are also sequences on disk. Using these trails for
history-aware prefetching essentially does not change the behavior of sequence-based prefetching,
except that the prefetching becomes more aggressive, which helps reduce diff ’s execution time. For
the second runs of grep or diff in either experiment, the execution times are very close to those of
the second runs shown in Figure 4. This demonstrates that noisy history only very slightly interferes
with history-aware prefetching if there also exists a well-matched history in the block table (e.g.,
the ones left by the first runs of grep or diff, respectively).

In the third experiment we concurrently ran these two applications five times, with the times of
each run reported in Table I, along with their counterparts with the stock kernel. The data shared
by diff and grep are fetched from disk by whichever application first issues requests for them, and
requests for the same blocks from the other application are satisfied in memory. The history of the
accesses of the shared blocks is the result of mixed requests from both applications. Because of non-
determinism in process scheduling, access sequences cannot be exactly repeated between different
runs. Each run of the two applications leaves different access trails over the shared blocks, which
are noisy history that interferes with the current prefetching. The more runs there have been, and
the more history is recorded, the easier it is to trigger an incorrect history-aware prefetching. This
explains why the execution time of grep keeps increasing until the fifth run (we keep at most four
timestamps for each block). Unlike grep, the execution time of diff in the second run is decreased by

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Prefetching Scheme Exploiting both Data Layout and Access History on Disk 39:17

 0

 10

 20

 30

 40

 50

 60

 70

strided grep Q4

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Linux 2.6.11
Diskseen w/o Coordination

Diskseen w/ Coordination

Fig. 11. Benchmark execution times on different Linux kernels.

23% (34.6s over 44.9s). This is because history-aware prefetching of the second source code tree,
which is not touched by grep, is not affected by the interference.

In the experiments, DiskSeen does not disable an activated history-aware prefetching for either
grep or diff as mis-prefetching is not sufficiently severe and the prefetching is still beneficial to both
applications in spite of the presence of noisy history.

Note that the presented performance improvements for DiskSeen are not due to improved prefetch
accuracy, which is quantified as prefetch hit ratio, or the percentage of prefetched data that are
actually requested by the programs before they are evicted. In fact, in the experiments the stock
kernel has comparable or even higher hit ratios than DiskSeen, as shown in Table I. In addition, for
the experiments described in Section 4.3, hit ratios are larger than 97% for DiskSeen and almost
100% for the stock kernel’s prefetching. For LXR in Section 4.4, the ratio varies between 72% and
77% for DiskSeen, and around 90% for the stock kernel. DiskSeen’s performance advantages mainly
come from two sources: (1) exploitation of more prefetching opportunities; and, (2) more efficient
disk access when prefetching. Though the stock kernel can have almost 100% of its prefetched
data used by programs, there are many requests whose data have not been prefetched and must be
retrieved from the disk on-demand.

4.6. Performance of DiskSeen on the Disk Array
To evaluate the effect of coordinated disk scheduling on DiskSeen’s performance on a disk array
we use four identical disks to form a RAID 0 with a 64KB striping unit, and the three bench-
marks strided, grep, and Q4 from TPC-H. For each of the benchmarks we simultaneously run three
instances, each accessing its own file. Figure 11 shows the execution times for each of the bench-
marks with the stock kernel, and DiskSeen without and with coordinated scheduling. The results
for DiskSeen are for the second runs of the benchmarks. With the use of disk array we expected
that the effectiveness of prefetching enabled by DiskSeen would be amplified because the data pre-
loading operation can be carried out by multiple disks in parallel. However, as Figure 11 shows, the
improvements without scheduling coordination are relatively small, even compared to their respec-
tive one-disk counterparts (Figure 4). With coordination the potential of I/O parallelism with a disk
array is unleashed and produces much greater improvements. The execution times of strided, grep,
and Q4 are reduced by 51%, 19%, and 60%, respectively, compared to DiskSeen without schedul-
ing coordination. Because strided and Q4 have more regular access patterns than grep from which
DiskSeen can form longer prefetch sequences, they achieve higher improvement ratios. Figures 12
and 13 show disk accesses in terms of LBNs in the executions of Q4 for DiskSeen with and without
scheduling coordination. As shown in the graphs, without scheduling coordination at different disks
each disk serves two trails of requests at almost the same time, indicating frequent disk head move-
ment and low disk efficiency. In contrast, scheduling coordination allows a segment of each trail to
be served efficiently before switching to another trail. We conclude that synchronizing the service
of prefetch requests by DiskSeen is essential for its effectiveness in the disk array environment.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 S. Jiang et al.

 8.4e+08

 8.6e+08

 8.8e+08

 9e+08

 9.2e+08

 9.4e+08

 9.6e+08

 9.8e+08

 0 10 20 30 40 50 60 70

Lo
gi

ca
l B

lo
ck

 N
um

be
r

Execution time of Q4 (seconds)

Diskseen w/o Coordination

Fig. 12. A sample of TPC-H Q4 execution using
DiskSeen without disk coordination.

 8.4e+08

 8.6e+08

 8.8e+08

 9e+08

 9.2e+08

 9.4e+08

 9.6e+08

 9.8e+08

 0 5 10 15 20 25

Lo
gi

ca
l B

lo
ck

 N
um

be
r

Execution time of Q4 (seconds)

Diskseen w/ Coordination

Fig. 13. A sample of TPC-H Q4 execution using
DiskSeen with disk coordination.

5. RELATED WORK
There are several areas of effort related to this work, spanning applications, OS, and file systems.

Intelligent prefetching algorithms: Prefetching is an active research area for improving I/O per-
formance. Operating systems typically employ sophisticated heuristics to detect sequential block ac-
cesses to activate prefetching, as well as to adaptively adjust the number of blocks to be prefetched
within the scope of a single file [R. Pai and Cao 2004; Smith 1978]. By working at the file abstrac-
tion and lacking mechanisms for recording historically detected sequential access patterns, these
prefetch policies usually make conservative predictions and so may miss many prefetching oppor-
tunities [Papathanasiou and Scott 2005], including those that span files.

There are sequence-based prefetching schemes that are not limited to the file abstraction, and
so can be used in data storage systems such as SAN systems. While predictions are made on the
detected access sequences, the major issues of interest in these works are when and how much
to prefetch, rather than what to prefetch. Specifically, the AMP scheme [Gill and Bathen 2007] is
concerned with cache pollution and prefetch wastage. Using a formal analysis of the criteria nec-
essary for optimal throughput, AMP adaptively changes prefetch timing and aggressiveness for the
highest I/O efficiency. The STEP system groups blocks into different sequence streams or prefetch
contexts [Liang et al. 2007]. Additionally, a cost-benefit model is built to determine the prefetch
length by considering prefetching cost and hit ratio. Interestingly, the method of grouping accesses
into different streams for prefetching has also been applied in the prefetching of data from mem-
ory [Diaz and Cintra 2009]. On the aforementioned issues, DiskSeen follows a more straightforward
method usually adopted by existing general-purpose operating systems. These sophisticated designs
complement DiskSeen’s design. In contrast, DiskSeen’s history-aware prefetching, which can cap-
ture additional prefetching opportunities and turn random accesses into sequential ones, still holds
a unique advantage.

There do exist approaches that allow prefetching across files. In these approaches, system-wide
file access history has been used in probability-based prediction algorithms that track sequences
of file access events and evaluate the probability of file occurrences in the sequences [Griffioen
and Appleton 1994; Kroeger and Long 2001]. These approaches may achieve a high prediction
accuracy via their use of historical information. However, the prediction and prefetching are built
on the unit of files rather than file blocks, making the approaches more suitable to Web proxy/server
file prefetching than for general-purpose operating systems [Chen and Zhang 2003]. The complexity
and space costs have also thus far prevented them from being deployed in general-purpose operating
systems. Moreover, these approaches are not applicable to prefetching for disk paging in virtual
memory, or file metadata.

In a more recent work on a prefetching scheme for disk arrays, the ASP scheme is proposed for
using more aggressive prefetching to leverage I/O parallelism in a disk array [Baek and Park 2008].
ASP seeks to avoid so-called independency loss in which a request must be served by multiple

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Prefetching Scheme Exploiting both Data Layout and Access History on Disk 39:19

disks. The scheduling coordination mechanism in DiskSeen does not require such independency for
disk efficiency, which allows the prefetching scheme to use larger size and number of requests for
greater I/O efficiency. The problem of lost disk efficiency in the use of the disk array has also been
identified in design of the disk scheduler [Xu and Jiang 2011] and in the use of data servers managed
by parallel file systems [Zhang et al. 2010]. In this paper we use a similar scheduling coordination
design specifically for prefetch requests.

Hints from applications: Prefetching can be made more effective with hints given by appli-
cations. In the TIP project, applications disclose their knowledge of future I/O accesses to enable
informed caching and prefetching [Patterson et al. 1995; Tomkins et al. 1997]. The requirements on
hints are usually high—they are expected to be detailed and to be given early enough to be useful.
There are some other buffer cache management schemes using hints from applications [Cao et al.
1996; Cao et al. 1994].

Compared with the method used in DiskSeen, application-hinted prefetching has limitations: (1)
The requirements for generating detailed hints may be too burdensome for application programmers,
and could be infeasible. As an example, a file system usage study for Windows NT shows that only
5% of file-opens with sequential reads actually take advantage of the option for indicating their
sequential access pattern to improve I/O performance [Vogels 1999]. Another study conducted at
Microsoft Research shows a consistent result [Douceur and Bolosky 1999]. It can be challenging
and burdensome for programmers to provide detailed hints, sometimes requiring restructuring of
programs, as described in the context of TIP [Patterson et al. 1995; Tomkins et al. 1997]. The
DiskSeen scheme, in contrast, is transparent to applications. (2) Sequentiality across files and disk
data disk locations cannot be known by applications, but are important for prefetching small files.
In our work this sequentiality can be easily detected and exploited.

Prefetching hints can also be automatically abstracted by compilers [Mowry et al. 1996] or gener-
ated by OS-supported speculative execution [Chang and Gibson 1999; Faser and Chang 2003]. An-
other interesting work is a tool called C-Miner [Li et al. 2004], which uses a data mining technique
to infer block correlations by monitoring disk block access sequences. The discovered correlations
can be used to determine prefetchable blocks. Though the performance benefits of these approaches
can be significant, they do not cover the benefits gained from simultaneously exploiting temporal
and spatial correlations among on-disk blocks. In a sense, our work is complementary.

Improving data placement: Exposing information from the lower I/O layers for better utilization
of hard disk is an active research topic. Most of the work focuses on using disk-specific knowledge
for improving data placement on disk to facilitate the efficient servicing of future requests. For
example, Fast File System (FFS) and its variants allocate related data and metadata into the same
cylinder group to minimize seeks [McKusick et al. 1984; Ganger and Kaashoek 1997]. Track-extent-
aware file systems exclude track boundary blocks from being allocated for better disk sequential
access performance [J. Schindler and Ganger 2002]. However, these optimized block placements
cannot be seen at the file abstraction. Because most files are of small sizes (e.g., a study on Windows
NT file system usage shows that 40% of operations are to files shorter than 2KB [Vogels 1999]),
prefetching based on individual files cannot take full advantages of these techniques. In contrast,
DiskSeen can directly benefit from these techniques by being able to more easily find sequences
that can be efficiently accessed based on optimized disk layout.

Recently the FS2 file system was proposed to dynamically create block replicas in free spaces on
disk according to observed disk access patterns [Huang et al. 2005]. These replicas can be used to
provide faster accesses of disk data. FS2 dynamically adjusts disk data layout to make it friendly to
changing data request patterns, while DiskSeen leverages buffer cache management to create disk
data request patterns that exploit current disk layout for high bandwidth. These two approaches are
complementary. Compared to looking for free disk space to make replicas consistent with the access
patterns in FS2, DiskSeen can be more flexible and responsive to changing access patterns.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 S. Jiang et al.

6. CONCLUSIONS
DiskSeen addresses a pressing issue in prefetch techniques—how to exploit disk-level information
so that effective disk performance is improved. By efficiently tracking disk accesses at the level of
logical block number, both in the live request stream and recorded prior requests, DiskSeen per-
forms more accurate block prefetching and achieves more continuous streaming of data from disk
than file-level prefetching. DiskSeen overcomes limitations intrinsic to the file-level abstraction
such as the difficulties in relating accesses across file boundaries or across lifetimes of open files,
and the invisibility of file metadata. At the same time, DiskSeen complements rather than supplants
high-level prefetching schemes, and is effective for both individual disks and disk arrays. Our im-
plementation of the DiskSeen scheme in the Linux 2.6 kernel shows that it can significantly improve
the effectiveness of prefetching, reducing execution times by 20%-60% for micro-benchmarks and
real applications such as grep, CVS, TPC-H.

REFERENCES
BAEK, S. H. AND PARK, K. H. 2008. Prefetching with adaptive cache culling for striped disk arrays. In ATC’08: Proceed-

ings of USENIX 2008 Annual Technical Conference. ATC’08.
BUTT, A. R., GNIADY, C., AND HU, Y. C. 2005. The performance impact of kernel prefetching on buffer cache replacement

algorithms. In SIGMETRICS’05: Proceedings of the ACM International Conference on Measurement and Modeling of
Computer Systems. 157–168.

CAO, P., FELTEN, E. W., KARLIN, A. R., AND LI, K. 1996. Implementation and performance of integrated application-
controlled file caching, prefetching, and disk scheduling. ACM Trans. Comput. Syst. 14, 4, 311–343.

CAO, P., FELTEN, E. W., AND LI, K. 1994. Application-controlled file caching policies. In USTC’94: Proceedings of the
USENIX Summer 1994 Technical Conference.

CHANG, F. AND GIBSON, G. A. 1999. Automatic i/o hint generation through speculative execution. In OSDI ’99: Proceed-
ings of the third symposium on Operating systems design and implementation.

CHEN, X. AND ZHANG, X. 2003. A popularity-based prediction model for web prefetching. IEEE Computer 36, 3, 63–70.
DIAZ, P. AND CINTRA, M. 2009. Stream chaining: exploiting multiple levels of correlation in data prefetching. In ISCA’09:

Proceedings of the 36th annual international symposium on Computer architecture.
DING, X., JIANG, S., CHEN, F., DAVIS, K., AND ZHANG, X. 2007. DiskSeen: exploiting disk layout and access history to

enhance i/o prefetch. In USENIX’07: Proceedings of the 2007 USENIX Annual Technical Conference.
DOUCEUR, J. R. AND BOLOSKY, W. J. 1999. A large-scale study of file-system contents. In SIGMETRICS ’99: Proceedings

of the 1999 ACM international conference on Measurement and modeling of computer systems. 59–70.
FASER, K. AND CHANG, F. 2003. Operating system i/o speculation: How two invocations are faster than one. In USENIX’03:

Proceedings of the 2003 USENIX Annual Technical Conference. 325–338.
GANGER, G. R. AND KAASHOEK, M. F. 1997. Embedded inodes and explicit grouping: exploiting disk bandwidth for

small files. In USENIX’97: Proceedings of 1997 USENIX Annual Technical Conference.
GILL, B. S. AND BATHEN, L. A. D. 2007. AMP: Adaptive multi-stream prefetching in a shared cache. In FAST’07: Pro-

ceedings of the 5th USENIX Conference on File and Storage Technologies.
GRIFFIOEN, J. AND APPLETON, R. 1994. Reducing file system latency using a predictive approach. In USTC’94: Proceed-

ings of the USENIX Summer 1994 Technical Conference on USENIX Summer 1994 Technical Conference.
HUANG, H., HUNG, W., AND SHIN, K. G. 2005. FS2: dynamic data replication in free disk space for improving disk

performance and energy consumption. In SOSP’05: Proceedings of the 20th ACM Symposium on Operating Systems
Principles. 263–276.

J. SCHINDLER, J. L. GRIFFIN, C. R. L. AND GANGER, G. R. 2002. Track-aligned extents: Matching access patterns to
disk drive characteristics. In FAST ’02: Proceedings of the 1st USENIX Conference on File and Storage Technologies.

JIANG, S., DING, X., CHEN, F., TAN, E., AND ZHANG, X. 2005. DULO: an effective buffer cache management scheme to
exploit both temporal and spatial locality. In FAST’05: Proceedings of the 4th USENIX Conference on File and Storage
Technologies.

KROEGER, T. M. AND LONG, D. D. E. 2001. Design and implementation of a predictive file prefetching algorithm. In
USENIX’01, Proceedings of 2001 USENIX Annual Technical Conference. 105–118.

LI, Z., CHEN, Z., SRINIVASAN, S. M., AND ZHOU, Y. 2004. C-Miner: Mining block correlations in storage systems. In
FAST ’04: Proceedings of the 3rd USENIX Conference on File and Storage Technologies. 173–186.

LIANG, S., JIANG, S., AND ZHANG, X. 2007. Step: Sequentiality and thrashing detection based prefetching to improve
performance of networked storage servers. In ICDCS’07: Proceedings of 27th IEEE International Conference on Dis-
tributed Computing Systems.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Prefetching Scheme Exploiting both Data Layout and Access History on Disk 39:21

LXR. Linux cross-reference. URL : http://lxr.linux.no/.
MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J., AND FABRY, R. S. 1984. A fast file system for unix. ACM Trans. Comput.

Syst. 2, 3, 181–197.
MOWRY, T. C., DEMKE, A. K., AND KRIEGER, O. 1996. Automatic compiler-inserted i/o prefetching for out-of-core

applications. In OSDI ’96: Proceedings of the second USENIX symposium on Operating systems design and imple-
mentation.

MPI-IO. MPI-2: Extensions to the message-passing interface. URL:http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.html.

PAPATHANASIOU, A. E. AND SCOTT, M. L. 2005. Aggressive prefetching: An idea whose time has come. In Proceedings
of the 10th Workshop on Hot Topics in Operating Systems.

PATTERSON, R. H., GIBSON, G. A., GINTING, E., STODOLSKY, D., AND ZELENKA, J. 1995. Informed prefetching and
caching. In SOSP ’95: Proceedings of the 15th ACM symposium on Operating systems principles. 79–95.

R. PAI, B. P. AND CAO, M. 2004. Linux 2.6 performance improvement through readahead optimization. In Proceedings of
the Linux Symposium.

SCHINDLER, J. AND GANGER, G. R. 2000. Automated disk drive characterization. In SIGMETRICS ’00: Proceedings of
the 2000 ACM international conference on Measurement and modeling of computer systems. 112–113.

SCHLOSSER, S. W., SCHINDLER, J., PAPADOMANOLAKIS, S., SHAO, M., AILAMAKI, A., FALOUTSOS, C., AND
GANGER, G. R. 2005. On multidimensional data and modern disks. In FAST’05: Proceedings of the 4th conference on
USENIX Conference on File and Storage Technologies.

SCHMUCK, F. AND HASKIN, R. 2002. GPFS: A shared-disk file system for large computing clusters. In FAST ’02: Pro-
ceedings of the 1st USENIX Conference on File and Storage Technologies.

SMITH, A. J. 1978. Sequentiality and prefetching in database systems. ACM Trans. on Database Systems 3, 3, 223–247.
TOMKINS, A., PATTERSON, R. H., AND GIBSON, G. 1997. Informed multi-process prefetching and caching. In SIGMET-

RICS ’97: Proceedings of the 1997 ACM international conference on Measurement and modeling of computer systems.
100–114.

VOGELS, W. 1999. File system usage in windows NT 4.0. In SOSP ’99: Proceedings of the 17th ACM symposium on
Operating systems principles. 93–109.

WEBSTONE. WebStone — the benchmark for web servers. URL: http://www.mindcraft.com/benchmarks/webstone/.
XU, Y. AND JIANG, S. 2011. A scheduling framework that makes any disk schedulers non-work-conserving solely based on

request characteristics. In FAST ’11: Proceedings of the 9th USENIX Conference on File and Storage Technologies.
ZHANG, X., DAVIS, K., AND JIANG, S. 2010. IOrchestrator: improving the performance of multi-node i/o systems via

inter-server coordination. In SC ’10: Proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2010.

